
482 

Acta Co, st. (1988). A44, 482-485 

Distr ibut ion Fitting Methods  Used as Figures of  Meri t  for Non-Centrosymmetr ic  Structures  

BY J. HAgEK 

Institute of Macromolecular Chemistry, 162 06 Praha 6, Czechoslovakia 

AND H. SCHENK 

Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, 
1018 WV Amsterdam, The Netherlands 

(Received 4 November 1987; accepted 16 February 1988) 

Abstract and quartets as 

Experimental tests have shown that for non-centro- 
symmetric structures distribution fitting methods can 
be used successfully as figures of merit for the deter- 
mination of the most probable set of phases. This 
applies to both symbolic addition procedures and 
multisolution methods. 

1. Introduction 

In a preceding paper (Ha~ek, Schenk, Kiers & 
Schagen, 1985) it has been shown that distribution 
fitting methods (DFM's) ,  theoretically described by 
Ha~ek (1984b, c, d), can be successfully applied as 
figures of merit (FOM's) to centrosymmetric struc- 
tures when used in the symbolic addition program 
SIMPEL83 (Schenk, 1983) or in the multisolution 
method MULTAN80 (Main, Fiske, Hull, Lessinger, 
Germain, Declercq & Woolfson, 1980). In this paper, 
similar results are presented for non-centrosymmetric 
structures. 

2. The use of DFM's for non-centrosymmetric 
seminvariants 

The best procedure for the solution of the phase 
problem consists in fitting the empirical distributions 
of seminvariant phase sums as a function of the 
unknown phases to the sharpest theoretical distribu- 
tions available at the particular stage of the structure 
determination (Ha~ek, 1974). In this way the whole 
a priori structure information contained in the distri- 
butions is utilized and as a result this procedure will 
yield more precise estimates of phases of the 
reflexions than standard methods. It comprises even- 
tually the most successful route to the solution of the 
structure. 

On the other hand, both the multisolution methods 
and the symbolic addition procedure assume that the 
value of a seminvariant is equal to the value at the 
maximum (mode) of its theoretical distribution. For 
example, the triplet relation is used in the form 

~H +~K + q~-H-K =0,  (1) 
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q~H + q~K + 9L+ 9-H-K -L = 0 or "n'. (2) 

Both methods calculate the phases by solving the 
over-determined set of linear relations (1) and some- 
times (2). When for a solution all the equations are 
satisfied, the corresponding probability distributions 
of triplets are ~ functions, i.e. all seminvariants are 
0 or 7r. In early stages of symbolic addition, before 
substitution of numerical values to symbolic phases, 
only a small number of the most reliable relations, 
without contradictions, are usually used. In general 
this leads to 'pseudocentrosymmetric '  solutions, i.e. 
all trial phases are either 0 or rr. After substitu- 
tion of numerical values to symbols, the tangent 
refinement may compensate partly for this 
'pseudocentric bias'. However, the actual distribu- 
tions of the invariants attain their true forms only 
after structure-factor least-squares refinement of the 
structure. 

Because the symbolic addition and multisolution 
methods tend to yield restricted values (0, 7r) for the 
phases, the simplest way to apply DFM's is to accept 
the bias and to test the distributions just for 0 and 7r. 
Thus, as for centrosymmetric seminvariants, the com- 
parison of the distributions of non-centrosymmetric 
seminvariants is reduced to the test of the fit between 
probabilities that the seminvariant values lie inside 
or outside the interval ( -7r /2 ,  7r/2). Therefore, 
the formulae for centrosymmetric and special 
seminvariants (Hagek, 1984b) can be used directly; 
naturally at the price that information about the distri- 
bution profiles is lost. 

3. DFM's in the symbolic addition procedure 

As in the centrosymmetric case (Ha~ek et al., 1985), 
DFM's were tested in SIMPEL83 (Schenk, 1983) for 
a number of non-centrosymmetric structures, one of 
which, K18JAP (Peschar, 1980) will be used as an 
example in this paper. All other results are compar- 
able. The K18JAP structure crystallizes in P2~2~21, 
with a = b, b = 15 and c =  15 A and N =72. The test- 
ing program DEM was implemented in parallel with 
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Table 1. Numbers of  reflexions which appeared in more than 40, 20, 10, 5 or 0 seminvariants for  the structure 
K 1 8 J A P  ( Peschar, 1980) 

Non-cen t rosymmet r ic  Cent rosymmet r ic  Non-cen t rosymmet r i c  
~ relation triplets triplets quartets  

More than 40 0 45 0 2 
More than 20 0 124 0 6 
More than 10 0 201 10 21 
More than 5 0 223 47 27 
More than 0 25 230 79 58 
Number of seminvariants 25 2121 154 133 
Number of untested phases 205 0 150 172 

the FOM calculation C R I T S  before the tangent 
refinement routine T A N R E F .  It uses the fitting of 
theoretical and empirical distributions by comparing 
their function values (Ha~ek, 1984b).* In order to do 
so the seminvariants were divided into four groups: 
Y'.~ relations, centrosymmetric and non-centrosym- 
metric triplets and non-centrosymmetric quartets 
(Table 1). Their distribution characteristics were 
calculated by means of the well known expressions 
(e.g. Giacovazzo, 1980). All tests of DFM's were 
carried out using the set of seminvariants selected by 
SIMPEL83 for the determination of the structure. No 
procedure for optimizing the choice of seminvariants 
using the theory of graphs (Ha~ek, Huml, Schagen 
& Schenk, 1983) was used in order to improve the 
number of reflections appearing in a particular 
invariant. For example, for K18JAP (Table 1), 172 
phases had no influence on the distribution of quartets 
because 58 reflections appear in the generated set of 
quartets only. 

The coefficients describing the fit of the 'pseudocen- 
tric distributions' are defined by 

Kk 2 z theor pt/rial)2 = wi~,Pi - . (3) 
i 

where the summation runs over all regions of 
seminvariants, pt/heor is the theoretical probability that 
the seminvariant in the ith region falls into the interval 
(-~r/2,  zr/2) a n d  ptirial is the relative frequency that 
the seminvariants from the ith region fall into the 
interval (-~r/2,  7r/2), and wi is a weight representing 
the reliability of pt[iat. The combined coefficient of 
the fit between 'pseudocentric distributions' is defined 
by the linear combination 

K = ~_, akKk (4) 
k 

where Kk are the coefficients of the fit for~! relations, 
centrosymmetric and non-centrosymmetric triplets 
and quartets and ak are coefficients giving them 
different weights. 

Generally, no large differences in the selectivity of 
'the best trial set' were found between the 'two-point 

* Note that  for  ' two-point  fitting' the distribution moments  can 
be expressed as a simple funct ion of  probabil i ty o f  a positive sign, 
e.g. (cos ~o)=2P  + -  1 etc. The fitting o f  distribution moments  is 
then equivalent  to the fitting o f  their  funct ion values. 

Table 2. Efficiency o f  the S IMPEL83  figures o f  merit 
for  K 1 8 J A P  for  solution no. 94 which reveals 

the structure 

S1 H K  Q PQ NQ C F O M  

FOM for the best 
solution 99 76 90 97 73 90 

Sequence no. of the 
best solution l 4 2 1 27 1-2 

distribution fitting methods' and the combined figure 
of merit (CFOM) of SIMPEL83.  The details of the 
behaviour of the two-point DFM's are given below 
for the example of K18JAP. 

In a default run of SIMPEL83  for the example of 
K18JAP, the program automatically used three gen- 
eral and two special symbolic phases, giving rise to 
128 trial solutions. Two sets (nos. 64 and 94) were 
selected as the most plausible ones with CFOM = 0.90 
in both cases. The values of the individual figures of 
merit are given in Table 2. Solution no. 64 gave no 
reasonable structure fragment but the E map of set 
no. 94, based on 198 phases refined by weighted 
tangent formula, yielded the eight highest peaks at 
correct atomic positions. Further, out of the 30 highest 
peaks 18 correct ones identified uniquely all the atoms 
of the ten-membered ring and its substituents. 

A comparison of the relative frequencies of non- 
centrosymmetric triplets (Table 3 c) clearly shows 'the 
pseudocentric character' of the best trial set of phases. 
The triplets were divided according to their weights 
into eight regions (characteristics are given in the 
tenth and eleventh columns of Table 3a) and accord- 
ing to their actual phase sums into eight intervals. 
The pseudocentric distribution of non-centrosym- 
metric triplets for 'the best trial set' of phases (Table 
3c) shows that all the phase relations ~0H+~OK + 
~0_H_K=0 are either exactly fulfilled or exactly 
contradictory, i.e. ~0H + ~oK + ~o_ n-  K = zr. This partly 
disappeared after tangent refinement of phases, where 
the averaging over a large number of phase indica- 
tions takes place. The bias of the actual distributions 
disappeared after the structure-factor least-squares 
refinement (Table 3a). 

The results of the 'two-point fitting' of the theoreti- 
cal and empirical distribution of triplets, divided into 
the eight regions of Table 3, is shown for K18JAP in 
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Table 3. Relative frequencies of non-centrosymmetric 
triplets (%) for K18JAP in the following intervals: 
1: (0, "rr/8) and (157r/8, 2rr); 2: (17"/8, 27r/8) and 

(14-n'/8, 15"n'/8);... ; 8: (7-n'/8, 9rr/8) 

Characteristics of  the regions of  seminvariants a, b, c , . . . ,  h are in 
the tenth and eleventh columns. 

(a) The actual distribution based on the final phases after struc- 
ture-factor least-squares refinement 

Region 
a 
b 
¢ 

d 
e 

f 
g 
h 

Mean Number 
triple of  

Sequence no. of interval product triplets 
1 2 3 4 5 6 7 8 in region in region 

70 24 6 0 0 0 0 0 0.753 17 
60 21 15 3 1 0 0 0 0.640 67 
48 31 9 8 4 0 0 0 0.541 261 
46 24 16 8 4 1 1 0 0.479 252 
37 27 19 8 3 3 2 1 0-439 414 
37 24 16 10 7 2 2 2 0.405 397 
26 27 18 11 6 4 3 4 0-369 624 
21 29 16 12 9 4 4 3 0.348 89 

(b) The theoretical distribution 
Sequence no. of  interval 

Region 
a 
b 
¢ 
d 
e 

f 
g 
h 

I 2 3 4 5 6 7 8 
51 31 13 4 1 0 0 0 
43 30 16 7 3 I 1 0 
37 28 17 9 4 2 1 1 
33 27 17 10 6 3 2 2 
31 25 18 11 6 4 3 2 
29 24 17 11 7 5 3 3 
28 23 17 12 8 5 4 3 
26 23 17 12 8 6 4 4 

(c) The actual distribution based on phases corresponding to 'the 
best trial set' after symbolic addition procedure for K18JAP 

Sequence no. of  interval 
Region 1 2 3 4 5 6 7 8 

a 100 0 0 0 0 0 0 0 
b 99 0 0 0 0 0 0 1 
c 9l  0 0 0 0 0 0 9 
d 88 0 0 0 0 0 0 12 
e 82 0 0 0 0 0 0 18 
f 79 0 0 0 0 0 0 21 
g 77 0 0 0 0 0 0 23 
h 78 0 0 0 0 0 0 22 

Table 4. The similarity of all three distributions is 
striking and the corresponding coefficient of the 'two- 
point fit' works satisfactorily for triplets (Table 5). 
The best fit between theoretical and trial distributions 
was found for set no. 64 (Table 5). The correct phase 
set was second in the ranking order after the combined 
K FOM. 

The comparison of the empirical quartet distribu- 
tions with the theoretical formulae taken from Haupt- 
man (1975) and Giacovazzo (1976) has not led to 
satisfactory results. The reasons are summarized in 
papers by Peschar & Schenk (1986, 1987), in which 
also more adequate theoretical distributions are 
described and tested. This will lead to improved 
results for DFM's. 

The coefficients Kk (3) for different seminvariant 
types and the combined coefficient of the fit K (4) 
are given in Table 5 as a summary for different trial 

Table 4. Relative frequencies of non-centrosymmetric 
triplets (%) in interval (-rr/2, rr/2)for K18JAP 

Characteristics of  regions of  seminvariants are in Table 3(a ) .  

(A)  Empirical distribution based on refined phases. 
(B)  Theoretical distribution. 
( C )  Empirical distribution based on the best trial set of  phases. 

a b c d e f g h 

A 100 99 96 94 91 87 83 80 
B 99 95 92 87 85 82 80 78 
C 100 99 91 88 82 79 77 78 

sets of phases. The results are comparable with those 
described in Table 2. 

4. Multisolution methods 

A different formulation of the DFM's has been used 
in the multisolution methods MULTAN80 (Main 
et al., 1980). It is based on a comparison of distribu- 
tion moments and in particular on the fitting of the 
widths of the empirical and theoretical distributions. 
Instead of variances, we tested mean values of three 
phase cosine invariants [(cos ~) calculated only for 
one side of the symmetrical distribution, i.e. on the 
interval (0, ~)] .  

Only triplets produced by a standard default run 
of MULTAN80 were used in the DFM program. 
After grouping the 3000 triplets into 15 regions 
according to their weights, the most probable set of 
phases was determined as the lowest value of 

K'=)-', ((cos q~tria.)k -- (COS q~)k)2/var((cos ~0)k), (5) 
k 

where the summation runs over all 15 regions, 
(cos ~0tria~)k is the mean value of cosine invariant in 
the kth region calculated from the trial phases, the 
theoretical value (cos ~0)k is calculated for the mean 
weight of triplets E 3 = 2[ EHEK E_ H - K [ / N  1/2 in the kth 
region according to the relation: 

(cos ~0)k = min {[(0"0106E3 - 0.1304)E3 

+ 0"5658]E3, 1} (6) 

and the corresponding variance 

var ((cos ( 'P)k) = max ( 1 - (cos q~)/E3 

- ( c o s  9)  2 , 0.004). 

No special attention was paid to symmetrically 
restricted triplets: they were handled in the same way 
as the non-centrosymmetric ones. Because all tests 
were carried out after the tangent refinement, the 
pseudocentric bias of the trial distributions is not so 
obvious as in symbolic addition. The coefficient (5) 
has proved to be successful for all structures routinely 
solved by MULTAN80 in the Institute of one of us 
(JH). No tests were made using quartets because they 
are not supported by MULTAN80. 
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Table 5. Coefficient K o f  the f i t  between pseudocentric distributions for  different types o f  seminvariants for  K 18JAP 

Non-centrosymmetric Centrosymmetric Non-centrosymmetric 
Seminvariant Combined K triplets triplets quartets ~1 relation 

Sequence no. of the 
best set 2 2 11 12 20 

Refined phases 6.7 3-2 1.6 8.7 3.7 
The best set of phases 19.3 8-4 3.5 7.4 7-6 
The lowest K 13.0 2-7 0-8 5.1 2-7 
The highest K 193.3 161.1 47.8 20.1 24.7 

5. Concluding remarks 

When DFM's  are used as figures of merit for the 
determination of the best trial set of phases in early 
stages of the phase determination, the description of 
the distribution profiles has to be adapted in order 
to overcome the problems with the bias of the phases 
in symbolic addition or multisolution methods. 
Therefore, in the case of symbolic addition, the distri- 
butions were calculated in two points only, as in the 
centrosymmetric case. Naturally, in this way the dis- 
tribution profiles are neglected and, as a consequence, 
the discriminating power of DFM's is not fully 
utilized. 

The significantly lower values of the coefficient of 
the fit for the refined phases, compared with those 
for pseudocentric solutions, indicate the possibility 
of obtaining better results by using the method 
ab initio, i.e. when the phases are refined directly by 
minimization of a criterion based on DFM's  as 
described by Ha~ek (1985b, c, d) without the preced- 
ing step of multisolution or symbolic addition pro- 
cedures. The main problem of this approach will be 
to find a sufficiently fast and converging algorithm. 
Also, theoretical probability distributions have to be 
used which describe the true distributions of 
seminvariants more adequately, in particular for 
quartets and quintets, where the existing formulae 
(e.g. Hauptman,  1975; Giacovazzo, 1976) are not 

sufficiently exact for the description of the profiles 
(Peschar 1987; Peschar & Schenk, 1986, 1987). 

JH thanks all members of the Laboratory for Crys- 
tallography at the University of Amsterdam for their 
cooperation and Dr K. Huml (IMC) for supporting 
this research. 
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Abstract 

Density modification techniques try to improve the 
phases of poorly resolved electron density maps given 
by isomorphous replacement by correcting the sys- 
tematic errors of the maps according to known phy- 
sical properties. The phases computed from the cor- 
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rected maps are combined with the observed moduli 
through a suitable weighting scheme. A new 
refinement strategy is proposed which considers the 
observed moduli and the moduli of the Fourier 
coefficients of the 'best'  map as isomorphous pairs, 
the Fourier transform of the known systematic errors 
being a 'heavy-atom contribution'. The lack of closure 
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